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ABSTRACT.  The paper examines undammed low frequency oscillations (LFOs) that can lead 

to system collapse, citing the Jordan power network incident on May 21, 2021. Traditional 

model-based methods for studying LFOs' small-signal stability have limitations. To address 

this, an online damping controller based on an artificial neural network (ANN) is proposed. 

Unlike existing ANN-based methods relying on offline controllers, this novel approach utilizes 

pre-disturbance data from phasor measurement units (PMUs) to dampen oscillations 

effectively. The paper addresses challenges of partially observable systems in online 

eigenvalue prediction using ANN. MATLAB is used to implement a feedforward ANN system 

trained on PMU data. The study involves a three-area test system with various operational 

scenarios, training the ANN across 406 scenarios to predict eigenvalues and damp LFOs. 

 

Keywords: Undammed low frequency oscillations (LFOs), System collapse, Small-signal stability, Model-

based methods, Measurement-based identification, Phasor measurement units (PMUs), Wide area damping 

controller, artificial neural network (ANN), Post-disturbance data, Ring-down method.  

 

1. Introduction. The paper presented herein delves into the critical analysis of undammed low 

frequency oscillations (LFOs) and their potential repercussions, notably demonstrated by the 

incident in the Jordan power network on May 21, 2021. These oscillations, with the capacity to 

induce system collapse, are intricately linked to small-signal stability in power networks. 

Traditional approaches for understanding LFOs, primarily reliant on model-based techniques, 

have shown limitations as expounded in prior research. In response, this paper introduces an 

innovative solution in the form of an online wide area damping controller. This controller is 

grounded in artificial neural network (ANN) technology and is adept at identifying LFOs 

through real-time data acquired from phasor measurement units (PMUs). Unlike prevailing 
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methods, which necessitate offline controllers, the proposed approach leverages pre-

disturbance data, eliminating the need for such controllers. The paper also addresses the 

challenges posed by partial observability in predicting system behavior using ANN. The study 

emulates real-world scenarios, particularly focusing on the Jordanian power system, while 

incorporating fully observable systems as a representation of the future landscape. Employing 

a feedforward ANN system with a backpropagation training algorithm implemented in 

MATLAB, the research utilizes comprehensive PMU measurements encompassing generator 

angles, reactive powers, and bus angles. Through an extensive array of operational scenarios, 

the paper trains the ANN to predict eigenvalues, providing a robust framework for effectively 

managing and mitigating the impact of LFOs in power networks. 

The utilization of advanced wide-area monitoring through the incorporation of phasor 

measurement units (PMUs) facilitates a continuous evaluation of the operational health of 

power grid systems. Over the past two decades, the practice of dynamically monitoring power 

systems for real-time operation and control has become increasingly prominent within the field. 

A spectrum of both linear and nonlinear methodologies have been proposed by scholars to 

effectively gauge the dynamic responses and proficiently estimate the key parameters 

associated with prevailing low-frequency oscillatory modes. The assessment of power system 

modes is conventionally carried out through two distinct avenues: the modal-based approach, 

characterized by its propensity to linearize governing equations surrounding operational points 

[1], and the measurement-based approach, which inherently engages in data-driven analyses of 

system measurement data [2]. The IEEE task force focused on the identification of 

electromechanical oscillatory modes substantiates a comprehensive compendium of techniques 

deployed across modal and data-driven paradigms [3]. Although the efficacy of model-based 

techniques in accommodating the intricacies of large-scale power systems is restricted due to 

computational exigencies, concurrently, measurement-based methods, particularly those 

harnessing synchrophasor technology, are widely adopted to discern and delineate low-

frequency modes [4]. This category of measurement-based techniques, encompassing 

methodologies such as Prony analysis [5], matrix pencil method (MPM) [6], signal parameter 

estimation via rotational invariant techniques (ESPRIT) [7], auto-regressive moving average 

(ARMA) technique [8], and eigenvalue realization algorithm (ERA) [9], is ubiquitously present 

within a myriad of scholarly works. These techniques feature prominently in investigations 

pertaining to ring-down oscillation studies. Similarly, concerning ambient oscillation studies, 

techniques encompass transfer function methods [10] alongside subspace methods [11], [12]. 

Notably, the subspace approach garners enhanced precision, thereby rendering superior results 

in terms of accuracy; nevertheless, transfer function methods persist as the favored recourse in 

consideration of computational efficiency [13]. 

 

This paper initiates by performing online mode identification through an Artificial Neural 

Network (ANN). Subsequently, the influence of partial observability on predicting online 

eigenvalues is addressed. The research employs a feedforward ANN system along with a 
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backpropagation training algorithm, executed using MATLAB 2020b. Each training dataset is 

partitioned into 80% for training, 10% for validation, and 10% for testing purposes. To validate 

the model, diverse scenarios are generated for each system after undergoing training within the 

MATLAB toolbox. 

 

2. ANN-Based Electromechanical Modes Identification. Within this section, the estimation 

of electromechanical modes in the three-area test system with string configuration [14] is 

undertaken employing three distinct inputs: generators' angles, generators' reactive powers, and 

bus angles. These data sets can be effectively acquired using PMUs during the pre-fault 

duration. 

The three-area test system [14] encompasses five PV synchronous generators and a slack 

generator. The angles of these generators are contingent upon the operational state and system 

topologies. Herein, an Artificial Neural Network (ANN) structure is trained utilizing generator 

angles across various scenarios. The ANN system is trained using a comprehensive set of 406 

scenarios, comprising: 

• Load 9 ranging from 1300 MW to 1900 MW, incremented by 100 MW, for operation point A. 

• Load 12 ranging from 900 MW to 1500 MW, incremented by 100 MW, for operation point A. 

• Load 16 ranging from 800 MW to 1500 MW, incremented by 100 MW, for operation point A. 

• Load 12 ranging from 1300 MW to 1900 MW, incremented by 100 MW, for operation point B. 

• Load 16 ranging from 900 MW to 1500 MW, incremented by 100 MW, for operation point B. 

• Load 9 ranging from 800 MW to 1500 MW, incremented by 100 MW, for operation point B. 

• Load 16 ranging from 1300 MW to 1900 MW, incremented by 100 MW, for operation point C. 

• Load 9 ranging from 900 MW to 1500 MW, incremented by 100 MW, for operation point C. 

• Load 12 ranging from 800 MW to 1500 MW, incremented by 100 MW, for operation point C. 

All the aforementioned 63 scenarios are systematically replicated for various system topologies. 

 

TABLE 1. Number of cases collected at different topologies. 

Topology Numbers of cases 

Normal 63 

TL9-16 tripped 63 

TL12-16 tripped 63 

TL15-16 tripped 63 

TL9-16 and TL 15-16 are tripped 63 

TL12-16 and TL 15-16 are tripped 63 

TL9-16 and TL 12-16 are tripped 63 

TL9-16, TL 12-16, and TL15-16 are tripped 63 

Unsuccess Load flow 98 

Total 406 

 

An additional set of 160 validation cases has been meticulously selected to thoroughly 

scrutinize the proposed framework. These validation instances encompass a diverse range of 

load and capacitor values, introducing a comprehensive spectrum of scenarios. 
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Within each scenario, employing small-signal analysis (as elaborated [14]), the real and 

imaginary components of the eigenvalues (both local and interarea) are meticulously computed. 

The prediction of these five eigenvalues (comprising three local and two interarea modes) is 

executed through the utilization of four distinctive parameters: 

- Generators' angles. 

- Generators' reactive power. 

- Generators and load voltage angles. 

- Buses' voltage angles. 

The configuration of each system engenders ten outputs, split into the real components (five 

outputs) and imaginary components (five outputs) of the eigenvalues. Every system undergoes 

five rounds of training, encompassing an exhaustive array of 100,000 diverse architectures, 

each characterized by varying numbers of layers and neurons. This encompasses all possible 

permutations of 1-5 layers housing 4-13 neurons per layer for each respective system. The 

outcome of this extensive experimentation is the identification of optimal structures that yield 

minimal mean square error for each system, as meticulously tabulated in Table 2. 

 

TABLE 2. Optimal structures of the proposed ANN. 

System input No. Layer  No. Neurons per Layer 

Generator buses’ angles  4 [10 6 7 10] 

Generators’ reactive power  4 [10 10 11 11] 

Buses’ voltage angels  4 [7 11 9 11] 

Generators and load buses’ angles  4 [11 8 10 11] 

 

The optimal structure for each system is trained 500 times. The optimal design is selected based 

on the mean square error of all 406 samples. The best mean square error of the training, 

validation, and testing stages are shown in Figures 1 to 4 for each system. 

 
FIGURE 1. Performance criterion for the generator bus angle-based system. 
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FIGURE 2. Performance criterion for the generator reactive power-based system. 

 

 
FIGURE 3. Performance criterion for the buses’ angles-based system. 
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FIGURE 4. Performance criterion for generator and load bus angle-based system. 

 

Figures 1 to 4 provide a comprehensive insight into the optimization process for each system's 

optimal structure, which was subjected to 500 training iterations. The selection of the most 

effective design was based on the mean square error calculated across all 406 samples. These 

figures elucidate the best mean square errors achieved throughout the training, validation, and 

testing stages for each individual system. 

- Figure 1 illustrates the performance criterion for the system centered on generator bus 

angles. Notably, the graph showcases the evolution of validation performance, with the 

most noteworthy achievement being a validation performance of 0.012152, attained at 

epoch 291. 

- Figure 2 outlines the performance criterion associated with the generator reactive power-

based system. The graph captures the trajectory of validation performance over iterations, 

with the optimal validation performance of 0.015585 materializing at epoch 62. 

- Figure 3 expounds upon the performance criterion for the bus angle-based system. The 

graph elegantly captures the fluctuations in validation performance, with a strikingly 

favourable validation performance of 0.011733 recorded at epoch 138. 

- Figure 4 delineates the performance criterion for the system predicated on both generator 

and load bus angles. The graph showcases the dynamics of validation performance, 

culminating in a remarkable validation performance of 0.0096272, observed at epoch 123. 

In essence, these figures meticulously portray the dynamic nature of the optimization process 

for each system's optimal structure, spotlighting the epochs at which the most favorable 

validation performances were achieved across the training iterations. 

Based on the performance criterion depicted in Figure 4, the most optimal system is determined 

to be founded on generator and load bus angles. This particular system was refined over 123 

iterations through the utilization of the backpropagation technique for training the ANN 

structure. The ensuing model is explored in the subsequent analysis. 

The interconnections between layers, as showcased in Figure 5, contribute to elucidating the 

system's architecture. Within these figures, the larger squares represent relatively substantial 

values, while the smaller squares denote diminutive values. Moreover, the coloring of these 
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squares is indicative of the value's sign (negative: red (dark), positive: green (light)). These 

figures collectively grant insights into the relative magnitudes of the weights employed within 

the system. 

 

 
FIGURE 5. system Wights.  

Figure 6 showcases the confusion matrix encompassing both interarea and local-area modes. 

This matrix serves to validate the efficacy of eigenvalue classification. As evident from Figure 

6 (a), the accuracy of correct predictions stands at 98.3%, with a mere 1.7% attributed to 

incorrect predictions. The most pronounced confusion within outputs materializes between the 

initial two outputs, corresponding to the real parts of interarea eigenvalues. This occurrence is 



DAMPING UNDAMMED LOW FREQUENCY OSCILLATIONS IN POWER SYSTEMS 

 

13 

 

deemed acceptable, given the proximity of real parts for both interarea modes. The concept 

underpinning the confusion matrix relies on a strict equality criterion with minimal tolerance. 

The robustness of the model is substantiated by the higher occurrence of correct predictions 

compared to incorrect ones. Consequentially, in light of these confusion matrix findings, the 

utilization of the mode index [15] is deemed unnecessary for oscillation mode categorization 

within this model. 

 

  
(a)                                                                 (b) 

 

FIGURE 6. Confusion matrix for (a) interarea modes (real 1, real 2, imaginary 1, imaginary 2) 

(b) local modes (real 1, real 2, real 3, imaginary 1, imaginary 2, imaginary 3) 

 

The histogram error is presented in Figure 7. From Figure 7, the maximum error is within 

0.002952. The online wide-area controller sensitivity should cover this error in both real and 

imaginary parts of the eigenvalues. 

 
FIGURE 7. Histogram error for all samples (training samples) 
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FIGURE 8. Output/target regression 

Output and target regression for the trained data is presented in Figure 8. From the Figure, the 

behavior of the system is very good. The validation data (160 samples) is applied to the model, 

and the prediction eigenvalues and the true eigenvalues are plotted at the same graphs in Figures 

9 for the local modes and Figure 10 for the interarea modes. 
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FIGURE 9. Local modes prediction for the validation data (160 samples) 

 
FIGURE 10. Interarea modes prediction for the validation data (160 samples) 
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Figures 9 and 10 prove the effectiveness of the application of the ANN in eigenvalues’ 

prediction using loads and generators angles. The fitting in the local-area modes is more 

accurate than that in the interarea modes. 

 

3. Oscillation mode identification for partially observable system. In this section, the 

assumption that the first area’s PMUs has a variance of (10−12), the second area’s PMUs has a 

variance of (10−11) and the variance of the third area’s PMUs is (10−10). It supposed that the 

data of the SCADA system has a variance of (10−6). Based on these assumptions, the measured 

data of each PMUs and the SCADA system are generated for all training (406 samples) and 

validation data (160 samples) in the previous section. 

Based on [16], the optimal PMU placement for the partially observable system by PMUs is 

obtained (bus 4 then 11 then 14). The three scenarios are considered here to obtain the 

eigenvalues from the measured data. The trained generator and load angle model in the previous 

section is selected here 

3.1. Partial Observable System by 1 PMU. In the three-area test system, three PMUs are 

needed to make the system fully observable. If the system is observable by the SCADA only, 

the white standard error with variance 10−6 are added to the actual data. 

For the first PMU location (bus 4 or 11 or 14), the error from PMUs is added to the measured 

data. the eigenvalues (real and imaginary parts) of the five modes are estimated using the trained 

model in the previous section. The error between the actual outputs (real and imaginary part of 

the eigenvalues) and the estimated are: 

 

Table 3. One PMU in the three-area test system. 

Error True data SCADA 

data  

One PMU at 

Bus 4 

One PMU at 

Bus 11 

One PMU at 

Bus 14 

Average 

absolute  0.066398 0.068022 0.066511 0.067927 0.067981 

Mean square 0.009904 0.010329 0.009943 0.010299 0.010321 

 

From the table, the optimal location of the first PMU is bus 4. The average absolute error is 

decreased from 0.068022 to 0.066511 by the first PMU. For all locations (Bus 4, bus 11, or bus 

14), the PMU enhances the prediction of the Eigenvalues. On the other hand, the high sampling 

rate of the PMUs makes the prediction is effective for the transient scenarios. The mean square 

error is also decreased for any location, but the optimal location (minimum error) is bus 4. The 

results validate the OPP for partial observability-based on the participation factor of the gain 

matrix. 

Figure 11 shows the average absolute error of the 556 samples for different PMU location. 

From the figure, the real part of the first local mode (output 1) and the real part of the interarea 

modes (outputs 4 and 5) prediction are enhanced when a PMU is installed at bus 4. The 

imaginary part of the interarea mode 1 prediction is also enhanced (output 9). The absolute error 

in output 7 (imaginary part of the third local mode) is decreased in the case of the PMU installed 

at bus 4, but this output is not affected if the PMU is installed at other locations. 
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FIGURE 11. Prediction eigenvalues error for the first PMU location 

 

3.2. Partial Observability System by 2 PMUs. The first PMU is installed at bus 4. Two 

choices for the second PMU are available (buses 11 and 14). The average absolute error of each 

output prediction in these two choices is shown in figure 12. The average absolute error, and 

the mean square error of these locations are: 

 

Table 4. Two PMUs in the three-area test system 

Error True data SCADA data PMUs at Bus 4 and 

11 

PMUs at Bus 4 and 

14 

Average 

absolute 0.066398 0.068022 0.066414 0.066486 

Mean square 0.009904 0.010329 0.009911 0.009935 

 

From the table, the optimal location of the second PMU is Bus 11. Once the third PMU is 

installed at bus 14, the average and mean square errors decrease to 0.066398, and 0.0009904, 

respectively. The results of the full system observability by PMUs are very close to the 

prediction using the true data. Figure 13 shows the average absolute error in case of the three 

PMUs are installed in the system (Full observable system). 
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Figure 12. Prediction eigenvalues error for the second PMU location 

 
Figure 13. Prediction eigenvalues error for the third PMU location 

 

4. CONCLUSION. In conclusion, the findings presented in this study underscore the 

significant potential of Artificial Neural Networks (ANN) in accurately predicting oscillation 

modes based on bus angle measurements obtained through Phasor Measurement Units (PMUs). 

The success of this prediction process is grounded in the utilization of ambient measurements, 

showcasing the applicability and effectiveness of data-driven methodologies in power grid 

stability assessment. 

The results vividly demonstrate that the ANN model achieves commendable accuracy in 

forecasting oscillation modes, a critical facet of ensuring power system stability and resilience. 

This achievement is a testament to the intricate capabilities of the ANN model to harness the 

inherent patterns within the measured angles of buses, thereby providing a valuable tool for 

real-time decision-making and control in power systems. 
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Furthermore, this study introduces a novel approach to optimizing the sequence of PMU 

installations, leveraging the predictive power of the ANN-based oscillation mode prediction. 

By strategically placing PMUs based on the anticipated oscillation modes, system operators can 

enhance situational awareness and expedite response times, bolstering the overall stability and 

operational efficiency of the power grid. 

As the energy landscape continues to evolve, the integration of advanced data-driven techniques 

like ANN promises to be instrumental in fortifying power system resilience and adaptability. 

This research contributes not only to the understanding of oscillation mode prediction but also 

offers practical insights into enhancing the deployment strategy of PMUs, thus heralding a new 

era of intelligent and predictive power grid management. 
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